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Abstract— MicroRNAs(miRNAs) are short, 21–23 nucleotide-
long, single stranded RNA molecules that have been identified as 
one of the most significant molecules that regulate gene 
expression in various organisms which bind to 3' untranslated 
regions (3' UTRs) of their target mRNAs. The expression of 
miRNAs varies in different tissues, based on their functions. It is 
remarkably important to predict the targets of miRNAs by 
computational approaches to understand their effects on gene 
regulation and other biological functions. Various computational 
methods have been developed for miRNA target prediction. The 
available tools for miRNA target prediction encompass a range 
of different computational approaches, from the modelling of 
physical interactions to the inclusion of machine learning. It is 
crucial to adjust the Bioinformatics tools for more accurate 
target predictions, as it is equally important to validate the 
predicted target genes experimentally. CPUs having multiple 
cores are becoming increasingly popular and common nowadays. 
These are used for CPU intensive tasks and processing of 
complex data structures. We can employ it to speed up miRNA 
target prediction procedure. It can be a faster method. In this 
paper, we have explored the use of multicore CPUs to accelerate 
miRNA target prediction. We have executed our target 
prediction algorithm on multicore CPUs to parallelize it using 
multithreading. 
Keywords — Bioinformatics, miRNA, Target Prediction, Gene 
Expression Regulation, Multithreading.  

I. INTRODUCTION 

Over the decades, the discovery of microRNAs (miRNAs) 
has totally changed our understanding of the complexity of 
gene regulatory networks. It is estimated that over half of 
mammalian protein coding-genes are regulated by miRNAs 
and most human mRNAs (Messenger RNA is a large family of 
RNA molecules that carry genetic information from DNA to 
other parts of the cell for processing i.e., ribosome sites for 
protein synthesis [3]) have binding sites for miRNAs [38]. 
Which genes are regulated by specific miRNA serves high 
potential biological knowledge. It serves a preliminary step in 
understanding the interaction of a miRNA with other genes and 
its functional position in regulatory mechanisms [4]. It is 
recognized from experimentally validated miRNAs and their 
target mRNAs that, they have high complementarity between 
them. Using this as a foundation, many algorithms have been 
developed to evaluate targets of specific miRNAs. Target 
prediction algorithms are mainly based on dynamic 
programming technique, machine learning, the free energy of 
the miRNA-target duplex and Hidden Markov Model (HMM). 

Results obtained from these algorithms produce many false-
positive target sequences [35][36][37]. True positives 
determine whether the two aligned sequences are genuinely 
homologous, whereas false positives determine whether they 
have been aligned by the algorithm by chance. If the alignment 
score falls below some threshold some of the alignments are 
not reported by the algorithm. We need to determine whether 
the sequences are true negatives (i.e., genuinely unrelated) or 
false negatives (i.e., homologous sequences that receive a score 
suggesting that they are not homologous). The goal of this 
paper is to develop an algorithm using dynamic programming 
that can estimate the miRNA targets with lower false-positive 
rates. Near perfect complementarity between miRNA and 
mRNA sequences eases the prediction of miRNA targets in 
plants. However, in animals it is really a challenging issue. 
Interaction between miRNA and mRNA lacks the perfect 
complementarity. This results in many different computational 
techniques to predict miRNA targets. A main goal of 
alignment algorithms is to maximize the sensitivity and 
specificity of sequence alignments. Sensitivity, also defined as 
the true positive rate (TPR), is the ratio of experimentally 
validated miRNA-target gene interactions predicted by an 
algorithm i.e., the number of true positives divided by the 
addition of true positive and false negative results. Also, 
Specificity is equal to 1 - false positive rate (FPR) which is 
defined as the ratio of false miRNA target gene interactions 
detected by an algorithm as being true i.e., the number of true 
negative results divided by the sum of false positive and true 
negative results [5]. Sensitivity is a measure of the ability of an 
algorithm to correctly identify genuinely related sequences 
whereas Specificity describes the sequence alignments that are 
not homologous. The performance of the algorithm is defined 
as the product of specificity and sensitivity. Most of the 
approaches used for miRNA target prediction are similar [36]. 
Some of the prediction criteria are: 

1) The miRNA and 3' UTR of mRNA sequence have
complementarity between them, especially between 
the seed region, position 2-8 of miRNA and mRNA.  

2) The thermodynamics of miRNA and mRNA
interaction can be assessed by currently accessible 
RNA folding packages. Many prediction algorithms 
exploit this fact for target prediction [36]. 

3) The 3' UTR target regions of a number of miRNAs
are highly conserved over various species [37].  
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We have accelerated the target prediction algorithm using 
multi-threading. The performance of multithreading depends 
on processor architecture, thread parallelism etc. If several 
threads work on the same dataset, they can actually share their 
cache. It ultimately leads to better cache usage or 
synchronization on its values. If an application does not exhibit 
sufficient amount of parallelism for multithreading, the 
processor utilization will not increase. Even if parallelism 
exists, the sharing of processor resources i.e., caches, 
functional units, etc., among threads, the context switching 
costs and the overhead of thread management and scheduling 
may hinder the overall performance [11][40]. 

A. Seed Match 

MicroRNAs regulate the gene expression by binding to the 
mRNA. The seed sequence is essential for the binding of the 
miRNA to the mRNA. The seed sequence of a miRNA is 
defined as the first 2–8 nucleotides starting at the 5' end and 
counting toward the 3’ end. Even though base pairing of 
miRNA and its target mRNA does not match perfect, the seed 
sequence has to be perfectly complementary. When adenosine 
(A) pairs with uracil (U) and cytosine (C) pairs with guanine 
(G) then a perfect match occurs between a miRNA and 
mRNA sequences. A perfect seed match between the miRNA 
and the mRNA target has no gaps in alignment in the 2-8 
region. Depending on the algorithm, various types of seed 
matches can be considered. The following types are the main 
types of seed matches [6][9]: 

1) 6mer: A perfect match for six nucleotides between 
the miRNA seed and mRNA sequence. 

2) 7mer-m8: An exact match to positions 2–8 of the 
mature miRNA seed. 

3) 7mer-A1: A perfect match from nucleotides 2–7 of 
the mature miRNA seed followed by an A. 

4) 8mer: A perfect match from nucleotides 2–8 of the 
mature miRNA seed followed by an A. 

 
B. Different Regions of mRNA 
 
 
 
 
 
 
 
Fig. 1.  mRNA structure, approximately to scale for a human mRNA [3]. 

 

Figure 1 shows three main regions in a mRNA sequence, 3’ 
UTR, 5’ UTR and the CDS region. The coding region of a 
gene, alternatively known as the coding sequence or CDS 
(from coding DNA sequence), is that portion of a gene's DNA 
or RNA, that codes for protein. The untranslated areas of 
mRNA are non-protein-coding. It indicates that their sequence 
is not read as codons relating to a specific amino acid. The 
significance of these untranslated regions of mRNA is just 
beginning to be understood [3]. Recent researches have 
reported some connections between mutations in untranslated 

regions and increased risk for growing a specific disease, such 
as cancer. 

C. Local Alignment Algorithm 

The local alignment algorithm uses the Dynamic 
Programming technique. The local alignment algorithm of 
Smith and Waterman (1981) is the most exhaustive method by 
which subsets of two protein or nucleotide sequences can be 
aligned. Local alignment is extremely useful in a variety of 
applications like database searching. A local sequence 
alignment algorithm resembles global alignment in sense that 
two proteins are arranged in a matrix and an optimal path 
along a diagonal is sought. However, there is no penalty for 
starting the alignment at some internal position, and the 
alignment does not necessarily extend to the ends of the two 
sequences [7]. 

In Smith–Waterman algorithm similarity matrix is 
constructed with an extra row along the top and an extra 
column on the left side. For sequences of lengths m and n, the 
matrix have dimensions m + 1 and n + 1. The score in each 
cell is selected as the maximum of the preceding diagonal or 
the score obtained from the introduction of a gap. However, 
the score cannot be negative. If all other score options produce 
a negative value, then a zero must be inserted in the cell [7]. 
We consider the gap penalty as a negative value. The score 
M[i,j] is given as the maximum of four possible values: 

1) The score from the cell at position i – 1, j – 1, that is, 
the score diagonally up to the left. To this score, add 
the new score at position s[i,j], which consists of 
either a match or a mismatch.  

2) M[i, j – 1] (i.e., the score one cell to the left) plus a 
gap penalty. 

3) M[i –1, j] (i.e., the score immediately above the new 
cell) plus a gap penalty. 

4) The number zero. 
This condition ensures that there are no negative values in the 
matrix. In contrast, negative numbers commonly occur in 
global alignments because of gap or mismatch penalties. 
 

 
 
 
 

 
 
Fig. 2. Recurrence relation for Smith-Waterman (SW) algorithm. 
 

From the above recurrence relation, the matrix is filled from 
top left to bottom right with entry [i,j] requiring the entries 
[i,j-1], [i-1,j-1], and [i-1,j]. By choosing the maximum value 
we make sure the best score is found and stored, so that the 
next entries are build up based on that.In this relation s[i][j] is 
the match/mismatch value. 

An example of the operation of local alignment algorithm 
to align two nucleic acid sequences are shown in Figure 3 and 
Figure 4 [10]. We have taken two sequences as Sequence X 
and Sequence Y respectively. The sequences are given below: 

M[i][0] = 0  ,  M[0][j] = 0 ; 
            0. 

M[i][j] = max      M[i-1][j-1] + s[i][j].        Match/Mismatch. 
            M[i -1][j] + gap penalty.    Deletion. 
            M[i][j-1]  + gap penalty.    Insertion 
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 Sequence X – “AGTGAA” 
 Sequence Y – “TAGTAAGAAT” 

Also, Figure 3 shows the steps involved in computing the 
similarity matrix. Here, we assumed that the match score is 2, 
mismatch score is -2, and the gap penalty is -4. Figure 4 
shows the local alignments with the optimal score (Scoreopt) 
calculated using the equation number (1). The topmost row 
and the leftmost column of the matrix are filled with zeros.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Steps involved in the calculation of similarity matrix using the 
sequences X and Y. 

 
The maximal alignment can begin and end anywhere in the 
matrix. The procedure is to identify the highest value in the 
matrix using the equation number (1). However, there can be 
more than one optimal score. More than one optimal score 
signifies that the sequences have more than one alignments. 
The trace‐back procedure begins with this highest‐value 
position and proceeds diagonally up to the left until a cell is 
reached with a value of zero. This defines the start of the 
alignment, and it is not necessarily at the extreme top left of 
the matrix. 

Scoreopt = max (M[i][j])            (1) 
 

i.e., the maximum value in the alignment matrix. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Local alignment of the sequences X and Y with the optimal score 
using Smith-Waterman (SW) algorithm. 

 

Here, 6 is the maximum score so we start all the alignments 
from the cell having the value 6. We then backtrack the matrix 
until a zero is found. 
 
 
 
 
 
 
 
Fig. 5. Possible aligned sequences obtained from the given nucleotide 
sequences. 
 

The aligned sequences obtained by aligning Sequence X and 
Sequence Y are shown in Figure 5. During backtracking we 
move in opposite direction. If the score is obtained from its 
immediate diagonal or upper or left cell, we proceed along 
that path. 

D.  miRNA– mRNA Interactions 

Computational techniques for identifying miRNAs and 
their targets analyses Watson-Crick complementarity in the 
seed region between the miRNA and the mRNA targets. 
Thereafter, sequence comparison between species is 
investigated for evolutionary conservation. Finally, the site 
accessibility is monitored to determine the secondary structure 
of the duplex and using free energy calculations 
thermodynamic favourability of the miRNA-mRNA duplex is 
analysed [1]. A miRNA can interact with a number of genes 
and a gene can be targeted by many miRNAs. Interaction of 
bases (base position 2–7 or 2–8), i.e. the seed region (counting 
from 5’ end), with the 3 ′ UTR of the target mRNA is 
considered to be significant for target validation by miRNA. 
This type of interaction was seen to dominate the 
experimentally validated miRNA-mRNA target pairs. 
However, recent studies pointed towards other types of 
miRNA target sites including bulges in the seed position and 
complementary sites from miRNA 3′ end [2]. MicroRNA-
target relationship provides valuable information about the 
role of individual miRNAs in gene regulation. It also helps to 
get a deeper insight into their system-level functions [4]. 
Target sites for animal miRNAs are not evenly distributed 
within 3’ UTR but they rather tend to group at both ends of 3’ 
UTR. It is typical of genes with short 3’ UTRs to have target 
sites at 5’ part of 3’ UTR. It is also known that 
complementarity at the 3’ end of miRNA affects miRNA 
target interactions [27]. Different sets of miRNAs can regulate 
alternative transcripts with varied length of 3’ UTRs. There is 
also a large number of mRNAs having potential multiple 
target sites for an individual miRNA. It was examined that 
multiple sites increases the degree of downregulation. Many 
target prediction algorithms apply this fact in their search and 
scoring [41]. Downregulation is the process by which a cell 
decreases the quantity of a cellular component (such as RNA 
or protein) in response to an external variable [3]. In animals, 
regions of strict complementarity, bulges and mismatches 
have been observed in almost all validated miRNA-mRNA 
interactions. Each of these duplexes has a region called the 
“seed” which shows the best conservation among the miRNA 
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sequence. There is no single model that would depict all 
miRNA-mRNA interactions as they are relatively 
heterogeneous. At least 6-7 nucleotides consecutively paired 
in positions 2-8 of miRNA are usually required to improve the 
effectiveness of miRNA-mRNA interaction which in turn 
facilitates target prediction. Securing more and more 
information about miRNAs and their role in gene regulation 
encouraged researchers to improve the way of analysing 
individual miRNA-mRNA interactions. 

Fig. 6. miRNA and mRNA target interaction [6]. 
 

Figure 6 shows schematic overview of a miRNA 
interaction with its mRNA target [6]. The position number of 
the miRNA is shown in blue. The seed sequence refers to 
nucleotides in miRNA position number 2–8. Flank denotes the 
mRNA sequence on either side of the seed region. WC 
matches in the seed sequence are shown in red, and G-U 
wobble in the seed sequence is shown in green. In a wobble 
base pairing between two nucleotides in RNA molecules does 
not follow Watson-Crick (Guanine-Cytosine and Adenine-
Thymine) base pair rules. 

 

II. LITERATURE SURVEY 
 
Early researches in the area of miRNA informatics focused 

on identifying miRNA genes along long strands. The problem 
is identified as investigating a region which represents a 
putative miRNA from given sequence [4]. A more challenging 
problem in the field is the validation of target genes for 
specific miRNAs. The difficulties in experimental validation 
of miRNA target genes have prompted the researchers to 
devise new computational methods to produce potential 
targets. The problem has been widely studied over the decade 
[39]. Most of the available methods use sequence information 
coming from miRNA and potential mRNA targets. Due to 
presence of perfect complementarity between miRNA 
sequences and mRNA targets, the problem is easily tractable 
in plants. However, in animals most miRNAs are not perfectly 
complementary to their targets, so the process cannot be easily 
explained. Some recent researches attempted to use gene 
expression data to evaluate the miRNA-target relationships. 
Current researches have already recognized that miRNAs 
have a certain effect on the expression level of the mRNAs 
that are established as their targets. Therefore, we can 
conclude that miRNA and mRNA should exhibit strong 
correlation if there is a binding relationship between them. 
Specific gene that are regulated by an individual miRNA 
provides high potential biological knowledge. It serves as a 
preliminary step in understanding the interactions of a miRNA 

with other genes and it’s functional position in regulatory 
mechanism [4]. 
 
A.   MicroRNA Target Prediction Tools 

 
miRanda [12][13] looks for high complementarity between 

miRNA and mRNA for identifying potential binding sites. 
The scoring method used by the algorithm favors 
complementarity between 3' end of mRNA and 5' end of the 
miRNA. Using basic parameter settings the false-positive rate 
is between 24% and 39%. 
miRanda-mirSVR [6][12] is an online tool that is a 
combination of two approaches. miRanda is used to recognize 
potential target sites and mirSVR is used to score them using 
an approach similar to SVM. It does not allow one to supply 
new data i.e.  all the results are precomputed. 
Support vector machine [21] uses machine learning approach 
for evaluating interactions between miRNA and mRNA. SVM 
is based on different features which can be classified into 
three elements: structural, thermodynamic and position based 
features. This method builds a statistical model and tries to 
validate miRNA targets by fitting miRNA and their targets in 
the model.  
TargetScan and TargetScanS [14][15] method checks for 
complementarity in the seed region. Also, it checks the 
complementarity in other regions. In the beginning of the 
prediction process it tries to filter many false-positives. Also, 
it uses conservation criteria for filtering. Predicted binding 
sites are then validated thermodynamically. TargetScanS is 
the improved version of TargetScan. The estimated false-
positive rate is between 22% and 31%. 
MirTarget2 [34] uses features extracted from a large 
microarray training dataset for predicting different miRNA 
targets. It makes target prediction using SVM [6].This 
machine-learning approach uses several popular prediction 
features like seed match, conservation, free energy, site 
accessibility etc. MirTarget2 predictions can be obtained from 
miRDB. 
PicTar [16][17] algorithm uses a group of orthologous 3' 
UTRs from multiple species and then scans it for those 
displaying seed match to miRNAs. Then the matched 
alignments are filtered according to their thermodynamic 
stability. Predicted targets are then scored using Hidden 
Markov Model (HMM) maximum-likelihood fit approach. 
DIANA-microT[18][19][20] was one of the first miRNA 
target prediction tool to predict targets in humans. This 
method uses a 38 nucleotide window that gradually moves 
across a 3' UTR sequence. It also calculates free energy of 
binding sites for target prediction [29]. Instead of 5' end 
complementarity it takes into account the 3' end 
complementarity to the miRNA. 
TargetMiner [8][22] is an SVM-based tool for identifying 
potential seed sites between a user provided miRNA and 
mRNA of choice. The tool is based on machine learning. 
Based on a pool of 90 feature set TargetMiner has 
significantly higher specificity and sensitivity of 67.8% and 
69%. Using a set of 30 selected feature set on the completely 
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independent test dataset the sensitivity and specificity 
becomes 76.5% and 66.1%. 
Probability of Interaction by Target Accessibility (PITA) [23] 
focuses on the features like seed match, free energy, site 
accessibility, conservation, and target-site abundance for 
target prediction. However, it uses target-site accessibility as 
the major feature for miRNA target prediction. At the 
preliminary step PITA recognizes a potential site by seed 
match criteria. It then considers site accessibility by 
computing a free energy score of the miRNA and its targets. 
Thereafter, target site abundance is considered [6]. 
RNAhybrid [25][26] is based on features like seed match, free 
energy and target-site abundance etc. It takes a user defined 
seed region and considers the free energy between a miRNA 
and its targets. Various advanced features are provided by the 
tool like specification of hits per target, helix constraints, 
maximal bulge loop size, maximal internal loop size and 
maximum free energy cutoff [6]. 
Although these tools use a combination of features to 
compensate for the shortcomings, each of these tools has its 
own merits and demerits. In terms of their wide range of 
capabilities, ease of use, comparatively current input data and 
maintenance of the software, three of these tools surpasses the 
others. These are miRanda-mirSVR, DIANA-microT-CDS 
and TargetScan. All of these tools are updated periodically 
over the last several years and are easy to use [6]. 
 
B. MicroRNA Target Gene Databases 

 
MicroRNA database and microRNA targets databases is a 

collection of databases and web portals and servers used for 
microRNAs and their targets.  
StarBase [28] focuses on miRNA-lncRNA, miRNA-mRNA, 
miRNA-circRNA, miRNA-pseudogene, miRNA-sncRNA, 
protein-lncRNA and protein-sncRNA interactions. 
TargetScan [14] predicts biological targets of miRNAs by 
searching for perfect match in the seed region of each 
miRNA. In flies and nematodes, based on the probability of 
their evolutionary conservation the predictions are ranked. In 
mammals and nematodes, the user can chose to extend the 
predictions beyond conserved sites and consider all sites. 
TarBase [30] database contains experimentally tested and 
validated miRNA targets, in humans/mice, fruit fly, worms, 
and zebrafish. 
miRTarBase [31] is experimentally validated microRNA-
target interactions database with up-to-date results. It contains 
experimentally validated data on various species. 
 

C. MicroRNA Databases 

 
  miRBase [32] database is a searchable database of published 
miRNA sequences and annotation. microRNA.org [12] is a 
database for experimentally validated microRNA expression 
patterns, predicted microRNA targets and target 
downregulation scores. 

miRDB [33][34] is an online database which mainly focuses 
on functional annotation as well as miRNA target prediction. 
Functional annotations are reported with a primary focus on 
mature miRNAs. 
However many more database like miRNAmap, PhenomiR, 
miRecords, miRWalk etc are also available. 

 
III. PROPOSED ALGORITHM 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Input:  

1. Number of threads. 
2. MicroRNA sequence. 
3. DNA Sequence in 3’ UTR. 

Output: 
Aligned sequences greater than a certain threshold value. 
 
Step 1: Compute the complement of the DNA sequence 
i.e., the A (Adenine) is complemented to U (Uracil) and C 
(Cytosine) to G (Guanine) and vice versa to get the 
mRNA sequence. Also reverse the sequence for target 
prediction. 
Step 2: Compute the number of sliding windows and 
assign equal number of sliding windows to each thread. It 
can be done in the following ways: 

a) Compute the total number of sliding windows. 
b) Divide the total number of sliding windows (say 

w) by the number of threads (say t) and assign it 
to X.  

c) Assign X number of sliding windows to each 
thread. 

d) If w modulus t is not equal to 0, i.e., w/t has a 
remainder, then assign these remaining windows 
to the final thread. 

Step 3: Generate sequences equal to the size of the 
miRNA sequence by sliding window approach in each 
thread. 
Step 4: Assign the match value, mismatch value, gap 
penalty in the 2-8 region (seed region) of the miRNA 
greater in magnitude than the values in rest of the regions. 
Compute local alignment with the sequences. 
Step 5: Write all the alignments greater than the threshold 
value. 
Step 6: Observe the 2-8 region of the miRNA sequence in 
the alignments. 

a) If there is a contiguous pairing in the seed region 
we conclude that it is a true positive pair. 

b) If there is no contiguous pairing in any of the 
alignments, we conclude that it is a false positive 
pair. 

Step 7: Exit. 
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IV. EXPERIMENTAL RESULTS 

For performance analysis, the algorithm was tested in 
different types of processors to observe how the algorithm 
utilizes the multi-threading concept, carried by the different 
multicore CPUs. Table. I displays the different processors, on 
which the algorithm was tested. We have taken the following 
gene sequence and a miRNA sequence.  

 
We get the target mRNA sequence from the input gene 
sequence. Finally, we compute the local alignment between 
the mRNA and microRNA sequences. 

 
The input gene (DNA) sequence is as follows: 
 
>NM_173647 Gene NAME: RNF149 GeneID: 284996 
“ACACGTGCCCACTGAAGTGGCACCAACAGAAGTTT
GGCTTGAACTAAAGGACATTTTATTTTTTTTACTTTA
GCACATAATTTGTATATTTGAAAATAATGTATATTAT
TTTACCTATTAGATTCTGATTTGATATACAAAGGACT
AAGATATTTTCTTCTTGAAGAGACTTTTCGATTAGTC
CTCATATATTTATCTACTAAAATAGAGTGTTTACCAT
GAACAGTGTGTTGCTTCAGACTATTACAAAGACAAC
TGGGGCAGGTACTCTAATATAAAGGACAGGTGGTGT
TTCTAAATAATTGGCTGCTATGGTTCTGTAAAAACCA
GTTAATTCTATTTTTCAAGGTTTTTGGCAAAGCACAT
CAATGTTAGACTAGTTGAAGTGGAATTGTATAATTCA
ATTCGATAATTGATCTCATGGGCTTTCCCTGGAGGAA
AGGTTTTTTTTGTTGTTTTTTTTTTAAGAACTTGAAAC
TTGTAAACTGAGATGTCTGTAGCTTTTTTGCCCATCT
GTAGTGTATGTGAAGATTTCAAAACCTGAGAGCACT
TTTTCTTTGTTTAGAATTATGAGAAAGGCACTAGATG
ACTTTAGGATTTGCATTTTTCCCTTTATTGCCTCATTT
CTTGTGACGCCTTGTTGGGGAGGGAAATCTGTTTATT
TTTTCCTACAAATAAAAAGCTAAGATTCTATATCGCA
CATGAGCATTAAGTTCTTCATTGCCTTGTTAAGGAAA
ATGAGTAGGCAGACTCAGAATCTGTTATATTGATTTC
AGTTACAATTTAATCTTTACAATTAAAAGGGCGAAA
GATGTAGAATTTTAGTTTTTGTTGTTGACTCGAAATA
ACCAGTTTTCTTGATTAGAGTTTAAGCAGATTTAATA
CCATGACCTTGCTTAACCGTTTCTTCTTTTTTACTTGC
TTGCTGTTCTTTTGGGTCAAAGGAGCAGGCTAATGCA
AAGCTTTTGGAGACTGCTAAGTGTTAAAAAGTGATT
AAACACACACTCTGCTATTTTTTCACTTCTTGGAGGT
AGAAGTCGAGTATGAGGCAGTTATTTTTTAGAGTGT
GGAATTATAGTCTTTCCTTGCTCCTAGTTATTCTGTAT
ATCTTTACTTTGTAGGTAAAAATAAATGTTTATTTAA
AACAATTTTTAAAATTATAAATTTATTTTTATAGCCA
TATGTAGGATATAAAGATTTATATAGATTATTTTCTC
AAGCTACTTAATGCTTTAATTCTAGCTACTCATCATG
AAATAGTAAACAGTTTTACTGAAATAAACTCTACAG
ACAGATGCAGTATGAGGAGCTATTGAAGTAGAAAAT
GTATTTCGCTTTGCACACTGAGTTGGTTTTAGCAGAC
AACCTCAAGTAGGTTTCCATAACAGCCATTACCTTTG
AAATCTACCTTCTGTAGTTTATTATAAATAGGAAAAT
ACATCCTGATTCTGTAGCAAGTAGATTGTTTGCTCTT
TGTCTTTAAGAAATACTAGGAGGGCCGGGCGCGGTG

GCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGA
GGCGGGCGGATCACGAGGTCAGGAGATCGAGACCAT
CCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAA
ATACAAAAAATTAGCCGG” 
 
The input mature microRNA sequence is as follows: 
>hsa-miR-373 MIMAT0000726 Homo sapiens miR-373 
“GAAGUGCUUCGAUUUUGGGGUGU”. 
 
  Here, we have used the scoring scheme such that in the 2-8 
region of miRNA the match, mismatch and gap values are 
more than the rest of the regions. We used a match value of 14, 
mismatch value of -10 and gap penalty of -6 for the seed 
region. For other regions, these values are set to half of their 
values i.e. 7,-5 and -3 respectively. Here, the length of the 
mRNA sequence is 1636 and the length of miRNA sequence 
is 23. Let the number of threads be 3, so the mRNA sequence 
is divided into 3 parts. The total number of sliding window is 
m-n+1, where m is the length of the mRNA sequence and n is 
the length of the miRNA sequence. So, the value of m-n+1 
will be equal to (1636-23+1) which is 1614. Now, we divide 
the total number of sliding windows by the number of threads 
which is denoted as X, where X indicates the number of 
sliding windows allocated to each thread. Therefore, the value 
of X is equal to (1614 / 3) i.e. 538. The mRNA sequence is 
divided into 3 parts from positions 0-559, 538-1097 and 1076 
-1635. Here, the lower limit of the sequence is (X * i) and the 
upper limit of the sequence is (X * (i+1) + |miRNA| - 2) where 
‘i’ denotes the number of iterations and |miRNA| denotes the 
length of the miRNA sequence. Also, ‘i’ varies from 0 to 
number. of threads minus 1.  If the number of sliding windows 
is not a perfect divisor of the number of threads, then we 
compute the remainder which is equal to the number of sliding 
windows modulus number of threads. We add this remainder 
to the upper limit in the last sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Alignments obtained by the algorithm over the target sequence. 

 
In our example, the 2-8 region is “AAGUGCU” in the 
miRNA sequence. This 2-8 region is mostly known as the 
seed region. Now, when we align RNF149 human gene with 
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the miRNA sequence miR-373, we get alignments which is 
shown in Fig. 7 with a threshold value of 135.We observed 
the aligned sequences in Fig. 7 for contiguous pairing in the 2-
8 region of the miRNA. There are no gaps in the seed region 
and hence it is contiguous. So, it is a true positive pair. Here, 
Alignment Score denotes the alignment score obtained during 
aligning the sequence. Also, ‘i’ and ‘j’ denotes the row and 
column of the cell in the alignment matrix where the highest 
score is found.  

V. DISCUSSIONS 

 
As more information about miRNA–mRNA interactions 

are becoming available, target prediction algorithms and 
publically available databases are continuously being 
developed. New publically available database tools are being 
developed to incorporate the new data [24]. A number of 
computational tools have been developed for miRNA target 
prediction over the decade. Here, we applied multithreading 
approach to analyse the seed region of miRNA for perfect 
matches with the target gene sequence. We know, local 
alignment using Smith-Waterman algorithm runs in O(n2) 
time. Despite of its high time complexity, it produces more 
accurate result than any other algorithms. So, we have used 
multi-threading technique to compensate for this high time 
complexity. We have provided a theoretical proof for the 
calculation of time complexity of our algorithm which is 
based on three assumptions. The assumptions are given at the 
end of this section. We have shown the computation of single 
or multiple threads on different multi-core CPUs. We have 
cited the relationships between the number of threads and 
number of processors and the computation of perfect linear 
speed-up with different number of processors. Suppose, length 
of the mRNA sequence is m and the length of the miRNA 
sequence is n. Let, the size of each sliding window be n. Then, 
the total no of sliding windows will be m–n+1. Assume, each 
operation of Smith-Waterman algorithm takes k unit of time. 
Then, if it is executed serially (i.e., using single processor), it 
will take ((m–n+1)*k) units of time. 
Computational diagram 1 is shown as follows: 
 
 
 
 
 
 
Fig. 8. Computational diagram 1 (algorithm using single thread). 

 
Figure 8 shows the execution of algorithm using single thread. 
If a sequence of instructions contain no parallel control then 
we may group them into a single strand, each of which 
denotes collection of one or more instructions. The 
instructions before the execution of Smith-Waterman 
algorithm are grouped into a single strand denoted by Start. 
After execution of Smith-Waterman algorithm, remaining 
instructions for computing results are grouped together to 

form a single strand denoted by End. The (m-n+1) denotes the 
number of sliding windows the algorithm operates on. Thus, 
when all the tasks of a single thread are taken into account, we 
get a total of ((m-n+1) + 2) operations. Let us assume that it 
takes k units of time to execute Smith-Waterman algorithm 
once. Then the total time taken by the algorithm will be 
(k*(m-n+1)) plus time taken to execute Start and End strands. 
But, we know that each of the (m - n + 1) Smith-Waterman 
operation can be executed in parallel without any interference. 
This is shown in Figure 9. Thus, if there are (m - n + 1) 
processors, the entire operation will take k units of time plus 
the time taken to execute Start and End Strands. 
 

 
Fig. 9. Computational diagram 2 (algorithm using multiple threads) 

 
Let, Tp be the time taken by p processors to execute the 
algorithm. 
Let’s assume that the Start Phase and End Phase takes 
constant time, i.e. O(1). 
Therefore, 
 
T1  = Time taken by a single processor  
     = (m – n + 1) * k + 2 * O(1) 
     ≈ (m - n + 1) * k 
 
T∞ = Time taken by infinite processors  
     = k + 2 * O(1)  
     ≈ k  
 
However, if there are infinite processors we won’t achieve 
perfect linear speed up. We can achieve perfect linear speed 
up when exactly (m - n +1) processors are used. 
Also as we know that [42], 
 
           Tp  ≤  (T1/p) + T∞                            (2) 
 
From equation number (2) we get an upper bound on Tp. 
 
Also, T∞ (w) denotes the running time of executing ‘w’ sliding 
windows using infinite processors. Here, ‘w’ denotes the 
number of sliding windows. So, 
 
T∞ (w) = max (T∞ (1), T∞ (1)……… T∞ (1)) 
                   = T∞ (1) 
                   = k                 (3) 
 
Now, we know that each Smith-Waterman algorithm takes 
O(n2) amount of time. Thus, T∞ (w) = k = O(n2) = c*n2 where 
c is a constant. Also 

 
  T1(w) = c*(m – n + 1) * n2                                     (4) 
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Here, T1(w) denotes the time taken by single processor to 
execute ‘w’ sliding windows. 
 
Therefore, Parallelism = T1 (w)/ T∞ (w)                         (5) 
 
Using equation number (3) and (4) in equation number (5) we 
get,                        
Parallelism =  Θ(m-n+1). 
Few optimistic assumptions that are necessary here are as 
follows: 

a) At the time of execution of the program, all the 
processors are experiencing minimum possible load. 

b) The operating system equally distributes the load 
among the processors. 

c) Depending on the processor’s availability each thread 
will be executed by distinct processor. 

We have executed the algorithm on different processors and it 
is shown in TABLE I. 
 

TABLE I 
EXECUTION OF THE ALGORITHM ON DIFFERENT ENVIRONMENTS 

 

Processor , RAM Used No. of 
Cores 

No. of 
Threads 

Intel® Core™ i3-3110M @2.40 
GHz, 4GB RAM 

 
2 

 
4 

Intel® Core™ i5-4210U @1.7 GHz, 
2.4 GHz, 4GB RAM 

 
4 

 
4 

Intel® Core™ i7-3610 QM @2.3 
GHz, 8GB RAM 

 
4 

 
8 

 
 

VI. CONCLUSION 
 

A number of computational tools have been designed for 
miRNA target prediction but to choose a perfect tool is a 
challenging task in Computational Biology. There is no 
particular algorithm that can be used generally for every 
analysis of 3’ UTR sequences. Securing more and more 
knowledge about miRNAs and their role in gene regulation 
prompted researchers to devise ways of analyzing individual 
miRNA-mRNA target interactions. This paper focuses on 
developing a new computational method using dynamic 
programming and multi-threading to predict miRNA targets 
with more accuracy. The paper discusses the currently 
available computational methods in brief and proposes a new 
algorithm using the currently available knowledge about 
miRNA and mRNA interactions. We have explored the use of 
multi-core CPUs on target prediction. We tested this 
algorithm on CPUs having multiple cores and observed the 
results.  The quality of target prediction with this method can 
be further improved by adding the more target predicting 
criteria’s like conservation, free energy etc. in future.  
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